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TI-m P ~  presents an analytical technique which produces 
usful closed form solutions for multidimensional ablation 
(or sublimation) of a solid resulting from surface heating 
with instantaneous removal of melt. 

Consider the half space z > 0, initially solid, to be heated 
on the boundary z = 0 by a heat input H(x, y, t). Assume that 
the temperature of the solid reaches for the first time the 
melting temperature Tm at t = 0. The heat input continues 
to be applied after t = 0, and the melting, whose boundary 
is given by S(x, y, t), spreads both along the surface and into 
the body. The melt is assumed here to be instantly removed 
upon formation. The mathematical formulation [1, 2] of 
the problem after the start of melting consists of Fourier 
heat conduction equation, 

/ 'dZT d2T -------It32T'~= t~T 
ctt~-£x2+~yZ+az: ] ~t' z>S(x ,y , t ) ,  (1) 

the moving boundary conditions at z = S(x, y, t), 

T(x, y. z, t): = s = T,,, (2) 

.,x,,,,) [ os 
K + l + t S x )  +tay/]kaz/=:s=a~7, (3) 

where p is the density, K the conductivity, Cp the heat 
capacity per unit mass, l the latent heat of fushion, ~t the 
diffusivity ( =  K/pC,,), and ot = pl/K. 

The method of solution is first to assume that the heat, 
conduction equation holds at the phase boundary (z = S). 
Since at the boundary the temperature is fixed at the 
melting point, equation (3) yields 

t3T dS OT 
0~ ~ ~z'  ~ = x or y, (4a) 

dT dS dT 
tg-~ = tgt dz" (4b) 

Then we find from equations (1) and (4) that the heat con- 
duction equation at the boundary is given by 

6x~ : : s  - 1 + \ a x /  + \?v/. Jkaz2J==s 

, 

= ~ ~7 t ,~ / , :~  ¢5) 

Combining equations (3) and (5), we see that at z = S, 

r< ~-J Lt, U)lkTV)J::,=<'oW 
(6i 

We immediately observe that if the temperature term, 

az ) l  az=J::~ 
is assumed to be either a function of independent variables, 
or just a constant, a tremendous simplification results. That  
is, the equation describing the motion of the phase boundary 
becomes linear and the interface may even be determined a 
priori for a known heat input. 

An obvious candidate for the temperature function T is 
n 

T = T, + k~l dPk(X' y' t)fk(k -- S). (7) 

There are two ways to determine the functional forms of 
~bk andfk. But the principle aim is not so much the exactness 
but the analytical solution of phase interface which is useful 
for practical purposes. The first method is to introduce the 
concept of a thermal boundary layer (S < z < 5) such that  
beyond 6 there is temperature equilibiium and no heat 
transfer. For example, it may be specified as follows, 

Fa"TG 
[T] ,=a  = Toand - -  fork 1, (8) [-azkJ=: = 0 ,  = . . .m.  

This technique does not attempt to satisfy the equation of 
heat conduction and the initial temperature distribution. 
The second method is to choose the functions fk and ~bk so 
that T somewhat satisfies equation (1). 

A THERMAL LAYER APPROXIMATION 

In this approximation it is useful to normalizefk as follows, 

T =  Tin+ ~ q~kfk Z - S  (9) 
k = l  

The form equations (2), (8) and (9), we find the following 
algebraic equations: 

L d~kfkfO) = O, flO) 
k = l  
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fl(1) f2(l) ... f,(1) ] 0 

I [j']"-"(1) f~2"-')(1) f~"-')(l)J 0 
t l l )  

where 

f~m~ = dmf(~)/d~m. 

The coefficient matrix of ~bk is a Wronskian of nth order. 
It is obvious that if T o is constant, then ~b k must be constant. 
For the nontrivial solution of ~bk, fk may be selected from a 
complete set of solutions to the homogeneous equation, 

f f ( O  + 9d¢ ) f~" ) (O  + . . .  g , - a ( ¢ ) f ( ¢ )  = O, 

where gdO are continuous on an open interval (0, 1). 
Examples of such a set are ¢~ and exp (¢) which are often 
used in one dimensional heat conduction problems. 

As an illustration, we consider the set of polynomial 
functions. 

L = \~ _ s ]  

The solution of equations {13) and (14) is 

n! 
&k = ~ -  1)k(n _ k ) ! k r ( T , .  - To), n :# 1. 

The temperature distribution is given by 
° 

r=tr~-ro) - ~ - S ]  +To. 

It is an easy task to show that equation 16), the displacement 
diffusion equation, becomes 

where 

~s ?t t?~x 2 + ~-yZ } = Q(x,  y,  t) 
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(12) 

~s ~ (Tin Z To ) 

Q K(T-.,--- To) - " 

Observing that ( (~2S/ (~Z2)z= s = O, we find 

I OS 
- - -  - V 2 S  = Q~x, y, t). 
7s ~t  

This equation can be easily translated into cylindrical and 
spherical coordinates, provided that the heat flux vector is 
normal to the surface and the velocity of the moving bound- 
ary is taken to be in the direction of heat flux vector. 

A P P R O X I M A T I O N  B Y  U S E  O F  H E A T  
C O N D U C T I O N  E Q U A T I O N  

In this approximation it is assumed that the temperature 
distribution is given by 

n 

T = T,, k ~ y ,  epdx)gdz  - S). 

The thermal conduction equation yields 

where 
g~ = dgk(~)/d ~. 

In order to illustrate the simplest scheme, we assume 
again that ~b k are constant and that gk are independent of 
each other• We see then that 

gk = A~ exp [ -- q(z - S)] + B k 

where 

q = _ ~ ~kg'(O), / ~ &kg"(O) 
k - I  ~ 1 

and A k and B k are constant. Incorporating ~b k into A k and B k, 
we find 

T = T , , +  ~ a k { e x p [ - q ( z - S ) ] - I  } (13) 
k ~ l  

where it is used that the temperature at the boundary is 
always fixed at the melting point, T,,. 

It is obvious that the solution, equation (13), cannot 
accommodate as general a boundary as shown in the 
preceding approximation. But it may be useful to study a 
motion of phase boundary in a half-space where the tem- 
perature at z(x, y) = Zo is kept at a fixed value, Tol < 7~.). 
For example if z0 is located at infinity, the temperature 
distribution is 

T = T m + ( T  m - To)(e -q~z-sl  - 1). 

In this approximation q may be chosen to satisfy the initial 
temperature distribution at a point other than at z = 0 and 
z = z o. The equation of motion for the phase boundary is 
determined from equation (6). 

1 ? S - g 2 S - 0 2 S  
~s ?t Ox 2 ?y2 - Q(x ,  t) 

where 

1 1 
- = - [ 1  +act /0  ] , qb = ( T  m -  To), andQ = H t x ,  t)/KCp. 
~ s  ct 

This equation is identical to equation (12), ifn is set to be oo. 
Therefore regardless of the approximation used, the problem 
is reduced to solving a linear differential equation of para- 
bolic type. 

In order to illustrate an application of the preceding 
analysis, we shall discuss a continuously vaporizing surface 
clue to laser irradiation and continual removal of the vapor- 
ized material from the surface. To simplify the calculations, 
it is assumed that the problem is in two space variables and 
that the heat source is symmetric with respect to the origin. 
x = 0. Then according to the preceding analysis, the motion 
of the depth of hole is given by [3] 

i f[ at' S(x,  t) = ~s 4n~s(t _ t,)] ~ Q!x' ,  t') 
r 

[ I x -  x'l 2 ] .  
exp [ -  4Ctsit _ r,iJox, (14) 
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where S(x, O) = 0 and I in a s needs to be interpreted as the 
latent heat of vaporization per unit mass. 

As an example we consider a pulse with shape given by 

Q(x, t) = Qoa(x) 

where Qo is a constant. The integration of equation (14) 
produces 

-{ - erfc I-Co IXl]~ 
S,.,, exp L 4n ] L ~ ] J '  

where X = X/Sm,, and S~,, = S(O, t) = Qo~%t/a) ½. 
For large values of Qo] XI/2n~, the solution t15)becomes 

[4] 

S 2n f QoX2"~ 2a 
Sma, -- e o - - ~  exp / J \ - -  - ~ - - ]  --- eo~X ~ 

Therefore if the surface aperture is measured by the distance 
at which SIS .... = g2 = a small constant, then the radius of 
the aperture is given by 

x, ~ ~/(2)(%t)½. 
£ 

The hole spreads along the surface proportional to t t. The 
same conclusion is reached by Boley and Yagoda [-1] from 
their early time solutions. It is also seen that the spreading is a 
function of % only. 

K(T v - To) 

~' = p[C~(T~ - To) + lvtl - l /n)]  

where T~ is the temperature of boiling point and Iv the latent 
heat of vaporization per unit mass. 

However, contrary to Boley and Vagoda [1], the maximum 
penetration into the solid is also proportional to t ½. For 
example, in aluminum, a crater depth of one millimeter may 
be produced by a millisecond-duration pulse with the heat 
flux of 15 kW(cm. This value falls in the range of representative 
values given in Ready [51. 

The shape of holes must be computed with a much more 
realistic heat input than the delta function, but this may 
require a numerical integration of equation (14). If equation 
(15) is used, then the slope of the hole at X = 0 = - Qo/2 
may be used as a measure for the steepness of the hole. For 
aluminum and the heat flux of 15 kW/cm, the slope is about 
-3 .  This is again comparable with a configuration of hole 
shown in Ready [5]. 
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INTRODUCTION 

THE RECENT publication of Analysis of Heat and Mass 
Transfer [1] and the re-introduction of a semi-analytical 
analysis of the film cooling effectiveness of [2] is the 
motivation for these authors to present certain aspects of 
the problem not yet available in the literature. Although the 
effectiveness presented in [1, 2] yields satisfactory agreement 
with experimental data, it is questionable as to whether the 

influence of variable fluid properties is expressed correctly 
[I]. In the present investigation, an attempt is made to study 
the influencing effect of the fluid properties in a purely 
analytical manner. The only empirical relation considered is 
the well-known Prandtl equation relating shear stress to 
momentum thickness. Also, it has been assumed that a 
power law relation ulu, = (y16) 1/" for the velocity distribution 
in the boundary layer holds far downstream from the slot. 


